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Because of the high performance and low weight requirements for modern
machines including engines, the belts servicing high dynamic loads at high speed
tend to be very susceptible to the transferred vibration. In this paper, a method is
proposed for obtaining the physical characteristics of the transverse vibrational
power #ow through moving rubber belts. The governing equation is derived by
applying Hamilton's principle to the description of the #exural vibrations in axially
moving belts, where the tensioner is considered to be a one-degree-of-freedom
system. The total power #ow calculated and measured in the moving belt is the sum
of the true power #ow and the power component associated with the steady
medium motion. Consequently, any component that is due solely to the belt
movement should be subtracted from the total power #ow in order to obtain the
true, net power #ow. This concept is employed in calculating the transverse
vibrational power #ow through belt}pulley systems that include a tensioner. An
equivalent system including an idler instead of the tensioner is also considered, and
the observed power #ow in this condition is ascribed to the power #ow due only to
the movement of the medium. The results of analysis show that the vibrational
power of the two belt-spans #ows into the tensioner. It is shown that the energy
#ow, measured by using two laser sensors, agrees reasonably well with the
predicted results. ( 2000 Academic Press
1. INTRODUCTION

Although belts are commonly used in various mechanical systems, many problems
such as belt span resonance and #uctuation often result from high dynamic loads
and high moving velocity of the belt [1]. Vibration problems in moving belts have
been handled by analytical models dealing with belt spans [2}5]. It was found that
the response of belts near resonance under high running speeds is dominated by the
non-linear e!ect. Moon and Wickert [6] studied analytical and experimental
models considering the non-linear e!ect. In order to identify the resonance
condition, they used the frequency diagram of the belt relating the linear natural
frequencies and the speed-dependent excitation frequencies originating from
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pulleys having eccentricities. The vibration of belts considering the coupling
between spans with pulleys has also been of concern [7}12].

Although the vibration power of belt span itself has been generally of interest,
this paper introduces the analytical and experimental methods to obtain the
vibrational power transmission from the moving belt into the support system. This
consideration is because the traditional heavy materials of pulley and supporting
structure have been replaced by lightweight plastics and aluminum and these
materials are weak in vibration and easily excited by the belt. In order to reduce
the vibration level of each belt span, idler and/or tensioner mechanisms are now
added in between the drive and the driven pulleys [13]. These additions easily
transfer vibrational power from one source to many parts, especially when many
components are connected and driven by a single belt. Consequently, solutions to
noise and vibration problems can be sought for in the light of reducing the
vibrational power transmission through pulleys and the tensioner connected to the
moving belt.

The time-averaged input power #ow into the idler and tensioner from the moving
belt can be written as

SPT
I
"m D<D2u/2, (1)

where m is the mass and < is the transverse velocity of idler or tensioner. The
vibrational powers of idler and tensioner were measured by using a laser sensor and
the results are shown in Figure 1. The vibration of the idler and the tensioner was
caused by the transverse vibration of the belt span. One can "nd that the vibration
power level in the idler condition is much lower than that in the tensioner
condition. Major peaks of the vibrational power spectrum of the tensioner consist
of three components: "rst, power transmitted from the connected belt spans;
second, rotating frequency of the tensioner and their harmonics; third, direct
excitation from the belt discontinuity. The vibration power of the bearing and the
structure supporting this tensioner causes the vibration and noise problems. A
reduction in vibrational power and subsequently acoustical radiation may be
attained by controlling the net vibrational power #ow through the belt. Analytical
methods were introduced for correctly calculating the energy and power #ow in the
axially moving media [14, 15].

In this paper, a method is proposed for investigating the characteristics of the
transverse vibrational power #ow through the moving rubber belt. The structural
intensity method used has been applied to stationary uniform [16] or
multi-supported beams [17, 18]. The total power #ow in the moving medium is
the sum of the components associated with the true power #ow and the movement
of medium itself. The latter, due to the di!erence between wave numbers in opposite
directions, will not carry actual power #ow. Consequently, any component
associated with the moving medium should be subtracted from the total power #ow
in order to obtain the true power #ow. By utilizing the beam model without
damping the total power can be dissolved into the true power and the component
associated with the moving medium only. This concept is employed in the
calculation of transverse vibrational power #ow through belt}pulley systems that
include a tensioner.



Figure 1. Measured spectra of the vibrational power of idler and tensioner - - - - - -, idler; ***,
tensioner. Peaks are related to (a) direct input power from the belt discontinuity, (b) rotating
frequency of the tensioner and their harmonics, (c) vibration component caused by the power #ow
from the second span, (d) vibration components caused by the power #ow from the "rst span.
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2. THEORY

As shown in Figure 2, a tensioner is located between the drive and the driven
pulleys. Usually, longitudinal, torsional, and transverse vibrations of the belt are
coupled. Since only the transverse vibrational power #ow is addressed in this paper,
it will focus on how the vertical motion of the tensioner is a!ected by the transverse
vibration of the rubber belt. Although the system has three spans, l

1
, l

2
, l

3
, only the

transverse vibration transmission between the "rst and second spans, l
1
, l

2
, will be

considered in this paper.
Excitation of transverse vibration is in general caused by the interactions of belt

and pulleys such as the non-circularity or eccentricity of the pulley system, the
surface irregularity of belt and pulley, and the dynamic loading [3, 19, 20].
Imperfections in belt sti!ness such as the end connection of the belt [21] excite the
belt in the transverse direction. This paper will show that the dynamic properties of
the belt tensioner function signi"cantly in changing the characteristics of the
vibrational power transmission.

2.1. BASIC GOVERNING EQUATION

The equation of motion for the small-amplitude transverse vibration of the
axially moving belt has generally been derived through Hamilton's principle. The
variation of time integral of the kinetic energy minus the potential energy of
a section of the belt between supports is zero. In this study, since the wavelength of
the transverse vibration of interest is much longer than the thickness of the belt,



Figure 2. Geometry of the typical belt}pulley system.
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rotary inertia and shear deformation e!ects are ignored. From the Euler}Bernoulli
beam model, the equation of motion for the belt under an initial tension R

0
can be

written as [8]

oA
L2w

i
Lt2

#2oAc
L2w

i
LxLt

#(i
i
oAc2!R

0
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#EI
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i
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"0, (2)

where o is the density of the belt, A is the cross-sectional area of the belt, E is the
modulus of elasticity, I is the area moment of the belt cross-section, w

i
is the

transverse displacement of the ith belt span, c is the band axial velocity, i
i
"1!1

i
,

and 1
i
is the pulley support constant of the ith belt span. If a general damping force

is added which is proportional to the velocity as bc (Lw/Lt)#b (Lw/Lx), equation (2)
can be rewritten as
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where b is the proportion constant. The "rst term in equation (3) is the centrifugal
force caused by the instantaneous curvature, the second term is the Coriolis force
generated by the combined linear and rotational motions, and the third term is the
tension force. In general, when a belt is initially tightened around two or more
pulleys, when driven by the rotation of one of them, it will transmit force by tension.
The di!erence in the belt tensions on the entering and leaving sides of any pulley is
the force transmitted to the pulley. In the two-pulley arrangement having diameters
of D and D@, respectively, the force transmitted to the pulley is R

T
!R

L
where R

T
is

called the tight-side tension and R
L

the loose-side tension. The torques developed,
¹ and ¹@, are given by

¹"(R
T
!R

L
)D/2 and ¹@"(R

T
!R

L
) D@/2, (4)
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where the ratio ¹@/¹"D@/D holds. Under the loading condition, the belt tension is
velocity-dependent and, at an axial transportation speed c, the tight-side tension of
moving belt, RM

T
, and the loose-side tension of moving belt, RM

L
, can be expressed as

RM
T
"R

T
#1

T
oAc2"R

T
#(1!i

T
)oAc2, (5a)

RM
L
"R

L
#1

L
oAc2"R

L
#(1!i

L
)oAc2. (5b)

Here, 1
T

and 1
L

are pulley support constants of the tight-side and loose-side
belt span, respectively, i

T
"1!1

T
, and i

L
"1!1

L
. Under idling or no-torque

conditions, R
T
"R

L
because there is no tension di!erence at each span. Although

the tension under loading and moving belt condition can be easily expressed by
using equations (5a) and (5b), only the idling or no-torque condition is investigated
in this paper.

The tension of the ith belt span is related to the stationary tension as follows [2]:

R
i
"R

0
#1

i
oAc2"R

0
#(1!i

i
)oAc2. (6)

The pulley support constant 1
i
is de"ned by [22]

1
i
"

k
i
d
i

oAc2
, (7)

where k
i

is the sti!ness of each belt in the axial direction and d
i

is the axial
displacement of each span. In Figure 3, the spring constants of the driving and
driven pulley bearings are identically 8]105 N/m, and the pulley support constants
for the "rst and second spans are calculated by changing the spring constant of the
tensioner. The pulley support constants of the "rst and second spans converge from
1 into a small value near to 0 as the spring constant of the tensioner increases. The
pulley support constant of each span generally di!ers from each other within the
practical range of the spring constant of the tensioner.

A steady state response due to the harmonic excitation for the axially moving
belt is assumed as

w
i
(x, t)"=

i
(x) exp( jut), (8)

where j"J!1. By substituting equation (8) into equation (3), one can obtain
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i
(x)u2#2joAc

L=
i
(x)

Lx
u#(i

i
oAc2!R

0
)
L2=

i
(x)

Lx2

#b=
i
(x)#bc

L=
i
(x)

Lx
#EI

L4=
i
(x)

Lx4
"0. (9)

By introducing=
i
(x)"exp(j

i
x), one can rewrite equation (9) as

EIj4#(ioAc2!R)j2#(bc#2oAcu)j#jbu!oAu2"0. (10)



Figure 3. Pulley support constant as a function of the spring constant of the tensioner: - -d- -, "rst
span; *j*, second span.
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In contrast to the undamped and stationary belt, the damped and moving belt will
have complex roots. The four roots of equation (10), j

1
, j

2
, j

3
, j

4
, can be obtained

numerically. Then, the general solution=
i
(x) will be

=
i
(x)"A

i
exp(j

1
x)#B

i
exp(j

2
x)#C

i
exp(j

3
x)#D

i
exp(j

4
x). (11)

The unknown coe$cients A
i
, B

i
, C

i
D

i
can be determined from the given boundary

conditions and the following matrix equation can be formed:

[Z(u)]M=N"MFN . (12)

Here, [Z(u)] is called the impedance matrix for axially moving belt, M=N contains
unknown coe$cients and MFN represents the excitation amplitude. Provided that
[Z(u)]~1 exists, the unknown coe$cients A

i
, B

i
, C

i
, D

i
can be obtained by

numerically solving the following equation:

M=N"[Z(u)]~1MFN. (13)

Then, equation (8) as the solution of equation (3) can be written as
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x)) exp( jut). (14)

Consider the transverse vibration of the axially moving belt span as shown in
Figure 4. The boundary conditions of this model are given by

w (0, t)"w
0

exp( jqu
p
t),

L2w
Lx2 K

x/0

"0,
L2w
Lx2 K

x/l

"0, w(l, t)"0, (15}18)



Figure 4. Schematic diagram of the belt span modelled as an axially moving beam.
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where q denotes the number of excitation events at the end x"0 and the system is
simply supported at x"l. Substituting the solution into equations (15)} (18), the
frequency response function [Z(u)]~1 can be obtained and it is a function of belt
speed. The variation of frequency response function with the belt speed is shown in
Figure 5, which reveals the fact that the "rst natural frequency of moving belt
decreases as the belt speed increases. Figure 6 shows that the natural frequency of
the belt decreases as the belt thickness increases and also the same frequency shift as
in Figure 5 can be seen.

2.2. POWER FLOW IN THE MOVING BELT

The #exural wave causes two internal forces to act in the belt: one associated with
bending and the other associated with moment. Both these forces are important in
carrying the vibrational power. The total vibrational power #ow along the belt
considering the aforementioned two components is given by [16]

SPT
T
"

EI
2

ReGC
L3w

i
(x, t)

Lx3 DC
Lw

j
(x, t)
Lt D

*
!C

L2w
j
(x, t)

Lx2 D C
L2w

j
(x, t)

LxLt D
*
H , (19)

where the asterisk denotes the complex conjugate. The structural intensity formula
in equation (19) has been used to calculate and measure the vibration power #ow in
the stationary structures. In order to apply this method to moving belts, the
components carrying no vibration power should be removed from the total power
#ow; this is because the absolute wave numbers in opposite directions di!er from
each other. As wave speed, wavelength, and wave number of the downstream
become higher, longer, and smaller, respectively, corresponding upstream
properties become lower, shorter, and larger. These factors cause the phase delay
along the belt due to the Coriolis force in equation (3). There will be no actual
power #ow associated with the belt movement.

True power #ow in the moving belt can be analyzed by using the moving beam
model without damping. Power #ow due to the bending moment in the stationary
beam is the same that from the shear force at a point far away from boundaries
[23]. In this case, the power #ow can be calculated if one of the two components is



Figure 5. Magnitude, real and imaginary part of [Z(u)]~1 varying the moving speed: ***,
500 r.p.m.; - - - - - -, 1000 r.p.m.; ))))))))))), 1500 r.p.m.
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calculated and simply doubled. However, these two components are no longer the
same when the wave numbers for two opposite directions are not the same. The
moment and shear components of the power #ow in the moving beam can be
written as

SP
M

T"!

EI
2

ReG C
L2w(x, t)

Lx2 DC
L2w(x, t)

LxLt D
*
H , (20)
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Figure 6. Variation of magnitude of [Z (u)]~1 varying the thickness and the moving speed:***,
500 r.p.m.; - - - - - -, 1000 r.p.m.; ))))))))))), 1500 r.p.m.
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where SP
M

T is the time-averaged power #ow associated with the moment and
SP

F
T is that associated with the shear force. The near"eld component is negligible

where it is su$ciently far from the discontinuities. When the re#ection coe$cient
R is introduced, the transverse displacement can be expressed as

w(x, t)"A[exp(!jk
b1

x)#R exp( jk
b2

x)] exp( jut), (22)

where k
b1

, k
b2

are the wave numbers in downstream and upstream directions
respectively. By using equations (20)}(22), one can derive the following power
quantities:
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Here, SPT
T

means the total power #ow and / is the phase di!erence between
upstream and downstream waves. It is noted that the power #ow due to the
moment is di!erent from that due to the shear.

When all progressive waves are totally re#ected at the boundary, R is 1 and
equations (23) and (24) can be rewritten as
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EI
2

uDAD2M(k3
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!k3
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)!(k2

b1
k
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Because k
b1
(k

b2
for a constant moving beam, the total power #ow is always

negative, i.e. SPT
T
(0. The increase in power #ow with belt speed is caused by

the di!erence in wave numbers. However, this is physically meaningless, because
the negative total power implies that the re#ective power becomes larger than the
incident power. Consequently, it can be said that the total power includes the
components carrying both the net power #ow and the power #ow associated with
the moving medium. This can be written as

SPT
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T#SP

mov
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T"SPT

T
!SP
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T, (28a, b)

where SP
true

T is the component of the actual power #ow and SP
mov

T is the power
#ow associated with the medium movement. When SP

true
T"0, SPT

T
equals the

component associated only with the medium motion. This means that the incident
power is equal to the re#ective power. The component SP

mov
T can be calculated

from equation (25) with DRD2"1 as
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When DRD2(1, there exists the true power #ow. Using equations (25) and (28b),
the true power #owing through the moving beam can be derived as
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As a limiting case, when k
b1
"k

b2
"k

b
and DRD2P0 in equation (30), the power

#ow in the stationary semi-in"nite beam can be calculated as SP
true

T"EIuDAD2k3
b
.

2.3. CHARACTERISTICS OF THE SINGLE SPAN BELT

In order to implement equation (3), the modulus of elasticity and the damping
coe$cient were experimentally determined. First, the belt was excited into
vibration by an impact hammer, and natural frequencies were obtained from
the frequency response function. The modulus of elasticity was calculated by



Figure 7. Measured Young's modulus and loss factor: d, measured data; - - - , linear regression.
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substituting the measured natural frequencies into the tensioned beam model. As
shown in Figure 7(a), a linear regression line was obtained for the evaluated
modulus of elasticity data. An increasing trend with frequency can be seen:
E"(1)018f#112)6) ]107 N/m2 with the standard deviation of 1)1]109, where f is
the frequency in Hz. Loss factor was obtained by using the half-power bandwidth
method. As shown in Figure 7(b), loss factor increases with frequency as
g"(1)33f#340)]10~4 having the standard deviation of 0)011. Linearly "tted loss
factor can be converted into the damping coe$cient by

b"gm
n
u

n
, (31)

where u
n

are natural frequencies, m
n
":l

0
oA sin2 (nnx/l) dx which means modal

mass, and l is the length of the belt span.
In order to know the nature of the boundary condition at the belt}pulley

junction of the axially moving belt, the natural frequencies were measured at the
center of the belt span by using the laser velocimetry (B&K 3544). Figure 8 shows
the relationship between the "rst natural frequency and the involved physical
parameters: belt thickness and tension. Each data point at a motor speed in
Figure 8 was obtained with averaging 3}5 measurements. Young's modulus of the
rubber belt was 8]109}5]1010 N/m2 and much smaller than that of the steel
belt/band, i.e., 20]1010 N/m2. The rubber belt is like a string with a negligible



Figure 8. Variation of the fundamental natural frequency of the moving belt due to the change of
involved parameters and motor speed. Solid marks denote the measured data and blank marks denote
the analytical data. (a) E!ect of belt thickness:*s*,*d*, h"1)1 mm;*h*,*j*, h"1)4 mm;
*n*, *m*, h"2)1 mm. (b) E!ect of axial tension: *s*, *d*, R

0
"98)0 N; *h*, *j*,

R
0
"73)5 N; *n*, *m*, R

0
"49)0 N.
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degree of bending sti!ness, of which the mass per unit length depends on the belt
thickness. Consequently, the natural frequency of the belt decreases as the belt
thickness increases. The natural frequency of the belt increases with the increase in
belt tension. Although there is a decreasing tendency in natural frequency with
increasing speed, its rate is not pronounced. This can be explained by using the
ratio of the belt speed to the phase speed of involved bending wave. During the test,
the speed range of the belt was 2)62}7)85 m/s that corresponds with the motor
speed range of 500}1500 r.p.m. Minimum and maximum values of the motor speed
should be compared with the corresponding phase velocity of bending waves.
When the phase velocity of bending wave c

cr
was 89 m/s, the ratios of minimum and

maximum belt speed to phase velocity, c
min

/c
cr

and c
max

/c
cr
, were 0)02 and 0)08

respectively. This explains why the contribution from belt velocity to natural
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frequency is small. One can "nd that the theoretical model assuming the
simply supported boundary condition predicts the "rst natural frequency very
closely with motor speed variation. From this reason, the simply supported bound-
ary condition will be used throughout this paper for describing the belt}pulley
junctions.

The main cause of transverse vibration of the belt span is usually the excitation
due to imperfections in the sti!ness of the belt connection. This connection
excites the belt periodically at the points where it enters and exits from the free
span attached to the pulley bearing surface. When the belt rotates over the drive
pulley at a rotational angular velocity u

p
, the point excitation at x"0 can be

expressed as

w(0, t)"w
0

exp( jqu
p
t), (32)

where w
0
is the strength of excitation and q is the number of events at which the belt

connection enters the free span per rotation. In the theoretical model of the belt
vibration, equation (32) should be used as a boundary condition with other simply
supported boundary conditions. Figure 9 shows the measurement layout for belt
displacement by using a laser velocity sensor at the junction point between free belt
span and pulley bearing surface. The length of the connection was 30 mm, the
rotating speed was 1000 r.p.m. (or 16)67 Hz), and the belt connection excitation
repeated every 0)251 s (or 3)94 Hz). Figure 10(a) shows the measured displacement
spectrum, where the "rst peak is at 3)94 Hz and other major peaks appear at
integral multiples of this frequency. A simpli"ed theoretical model is needed for
calculating the power #ow and this can be done by the truncated spectrum
modelling as

w(u; 0, t)"
n
+
i/1

A
i
exp( ju

i
t), (33)

where n is the number of truncated peaks. The coe$cients A
i
may be obtained from

either the slope or the magnitude of the spectrum. The slope can be determined by
Figure 9. Measurement of the input displacement of the moving belt.



Figure 10. Displacement of the belt connection at 1000 r.p.m.: (a) measured spectra; (b) analytical
model in the frequency domain; (c) analytical model in the time domain.
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a linear regression of the "rst to the 38th peak values; the overall magnitude can be
determined by the measured overall level. Substitution of proper values into A

i
and

u
i
in equation (33) yielded Figure 10(b) and the time data in Figure 10(c) was

obtained from the inverse Fourier transform of equation (33). One can observe that
Figure 10(c) represents the excitation mechanism of the belt}pulley system very
well: the peak interval is the same with the rotation cycle of the belt, and the shape
of the force function looks impulsive. The time duration passing the length of the
connection was 0)005 s at 1000 r.p.m. and, compared with Figure 10(c), the actual
time interval was slightly longer than the calculated time. This means that
excitation began before the belt connection entered the free span, and ended after
the belt connection excited the free span.
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There is no power #ow in the actual single-span belt}pulley system, because the
same amount of the excitation strength is given at each boundary and all powers
are totally re#ected. However, the power #ow can be calculated for this
semi-in"nite condition if only one pulley is considered and the other part of the belt
is considered the only source of the excitation. The calculated results can provide
the basic information on the power #ow in the moving belt system. Using equation
(28b), the spectrum of the true transverse vibrational power #ow can be calculated
by changing the belt thickness and the modulus of elasticity as shown in Figure 11.
Figure 11. Variation of the vibrational power transmission through the axially moving belt by
changing involved parameters. (a) E!ect of thickness:*n*, h"2)0 mm;*s*, h"2)5 mm;*h*,
h"3)0 mm; *£*, h"4)0 mm. (b) E!ect of Young's modulus: *n*, E"3)0e9 N/m2; *s*,
E"6)0e9 N/m2; *h*, E"9)0e9 N/m2; *£*, E"1)2e10 N/m2.
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Transmitted power increases with the increase of thickness, owing to the increase in
area moment. It can be seen that the power #ow decreases as the modulus of
elasticity of the belt increases.

2.4. MULTI-SPAN BELT

2.4.1. Idler condition

The multi-span belt}pulley system can be classi"ed into the two conditions
according to the involved components: the idler with "xed bearing and the
tensioner with a helical spring and a damping mechanism. The physical condition
of the single-span belt}pulley system or the simple belt}pulley system with an idler
is called the idler condition. In this condition, the incident transverse power is
assumed to be totally re#ected from the points of intersection of belt and pulleys.
This is due to the simply supported boundary condition assumed in the foregoing
section. No actual power #ow exists in the idler condition, so that the observed
power #ow can be ascribed to that associated with the belt movement only.
Therefore, the true power #ow can be estimated by using equation (28b) when the
idler is replaced by a tensioner. Although the system may possess three or more
spans, the transverse vibrational power #ow between the "rst and second spans
only will be considered here.

The idler condition can be further categorized into the two conditions. First, the
two spans can be coupled at the center hinge between their endpoints. This
condition can be adopted in modelling the strong coupling systems such as the steel
belt [7]. However, only hard rubber belts are concerned in this study, of which the
corresponding coupling between two spans can be considered a weak one. This is
because the vibration power transferred from the "rst span to the second one is very
weak in comparison with the input power injected into the second span. When the
ends of each span excite adjacent spans as shown in Figure 12, the boundary
conditions are given by
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Equations (34) and (41) represent excitations at the ends in x
1
"0 and x

2
"l

2
,

respectively, while the simply supported boundary conditions at the ends are shown
in equations (35)}(40). Substituting the solution into equations (34)} (41) and
equation (11), the vibrational power #ow through the axially moving belt can be
obtained from equation (19).



Figure 12. Schematic diagram of the two-belt span modelled as axially moving beams passing
through an idler.
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2.4.2. ¹ensioner condition

The reduction of the vibrational power #ow through belt}pulley systems is of
interest in many practical "elds because of the concomitant vibration and
noise problems in pulleys, tensioners, and their structural support systems.
The tensioner sustaining the appropriate tension in the belt}pulley system also
transfers the vibration power. The physical condition of the belt}pulley system
with a tensioner as depicted in Figure 13(a) will be called the tensioner condi-
tion. In Figure 13(b), a schematic diagram is illustrated for the theoretical
modelling of vibration power transmission in the belt}pulley system with
a tensioner. The boundary conditions speci"ed for the tensioner are as
follows:
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The displacement of the tensioner as a common support of the two-belt spans
at x

1
"l

1
(or x

2
"0) should be the same for both spans in equation (44). In

equations (45) and (46), the moment is zero at the common support and the
simple mass, damper, spring system in equation (47) describes the tensioner dynam-
ics for balancing the shear force. The same procedure as the preceding section
should be followed for estimating the vibrational power #ow through the moving
belt.



Figure 13. (a) Con"guration of the typical belt tensioner, (b) schematic diagram of the two-belt
span modelled as axially moving beams passing through a tensioner.
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3. COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

3.1. MEASUREMENT METHOD

Based on the "nite di!erence approximation, the vibrational power #ow can be
determined from the cross-spectral density measured by two closely spaced laser
velocity sensors as follows [24]:

P"

2JoAEI
D

Im(G
21

). (50)

Here, G
21

(u) is the one-sided cross-spectral density between the two measured
velocities at points 1 and 2, and D is the laser-beam spacing. Phase di!erence
between channels was compensated for precise measurement. The experimental
set-up was as shown in Figure 14. The test system consisted of two driving and
driven pulleys of 100 mm in diameter and the separation between the two shafts
was 500 mm. The distance between the shafts of the drive pulley and the idler or
tensioner was 0)2 m in the x direction. The distance between the shafts of the driven
pulley and the idler or tensioner was 0)3 m in the x direction. A speed-controllable



Figure 14. Con"guration of the two-span belt}pulley system and the measurement set-up for
measuring the energy #ow in axially moving belt including a tensioner.
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1/4-hp motor drove the driving pulley and the rotation speed was adjustable from
500 to 1500 r.p.m., while the driven pulley was unloaded. The rectangular
cross-section of the rubber belt was 2)1 mm]20 mm and the belt tension was 98 N.
A pair of laser sensors separated by 0)02 m measured the power #ow at the center of
each span in a non-contact manner.

3.2. IDLER CONDITION

In Figure 15, the calculated power #ow in the "rst and second spans are
compared with the measured ones for the idler condition at 1000 r.p.m. It is noted
that most of the vibrational energy #ows are concentrated in the region of the "rst
natural frequency of the belt. Under this idler condition, because the damping
mechanism of the support structure does not exist, the power #ow in Figures 15(a)
and (b) is associated only with the internal damping of the belt and the e!ect of
medium motion. The negative power #ow for the "rst span means that the e!ect of
medium movement is dominant compared with the contribution from internal
damping. In contrast, the magnitude of the second span as shown in Figures 15(c)
and (d) is smaller than that of the "rst span. This is because the direction of power
#ow caused by both the internal damping of the belt and the e!ect of medium
motion is nearly the same. The direction of vibration power #ow is opposite to that
of the belt movement. It is observed that there is a reasonable degree of agreement
between calculated and measured data, although small di!erences between
magnitudes occur. This discrepancy arises from the fact that each span of the actual
system was excited at two end positions while each span of the theoretical model
was excited by only one end.

3.3. TENSIONER CONDITION

Comparison between measured and calculated data is shown in Figure 16 for the
tensioner condition at 1000 r.p.m. In Figures 16(a) and (b), measured and



Figure 15. Vibrational power #ow in the belts passing through an idler at 1000 r.p.m.
(a), (b) Measured and calculated data at the "rst span; (c), (d) measured and calculated data at the
second span.
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calculated power #ows through the "rst span were !0)002 and !0)020 W
respectively. Under this tensioned condition, the damping mechanism of support
structure can exist. Consequently, the power #ow in Figures 16(a) and (b) includes
all e!ects from the internal damping of the belt, the damping mechanism of support
structure, and the medium movement. The negative power #ow for the "rst span
means that the e!ect of belt movement is again dominant compared with the
internal damping of the belt and the damping mechanism of the support structure.
Resultant magnitudes are larger than those of the idler condition because the true
power component was added in this case. The two conditions in Figures 15 and 16
are compared for the "rst span and their di!erences in measurement and
calculation were 0)094 and 0)06 W respectively. The di!erence is due to the
damping mechanism within the tensioner. Measured and calculated power #ows
through the second span are shown in Figures 16(c) and (d). The magnitude of
power #ow in the second span is smaller than that of the "rst span. This is because
the direction of power #ow is identical for three involved mechanisms, i.e., the
internal damping of belt, the e!ect of medium motion, and the damping mechanism



Figure 16. Vibrational power #ow in the belts passing through a tensioner at 1000 r.p.m.
(a), (b) Measured and calculated data at the "rst span; (c), (d) measured and calculated data at the
second span.
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of support structure. Measured and calculated transverse power #ows were !2)1
and !1)8 W respectively. Di!erences in the measured and the calculated
magnitudes between the two conditions in Figures 15 and 16 were !0)6 and
!0)62 W respectively. When equation (28b) is employed, the true power #ow
through the moving belt can be obtained. Figure 17 shows the measured and
calculated true power #ow through two spans. The di!erence is caused by the small
di!erence in boundary conditions between the actual system and the calculation
model. In Figure 17(a), the direction of power #ow through the "rst span is positive,
i.e., from the driving pulley to the tensioner. In Figure 17(b), the direction of power
#ow through the second span is negative, i.e., from the driven pulley to the
tensioner. These results clearly show that the vibration power is transmitted from
the belt}pulley junctions to the tensioner.

3.4. PARAMETRIC STUDY

By using the proposed method, the characteristics of vibration power of the
tensioner can be predicted by changing the involved dynamic parameters of belt



Figure 17. Actual vibrational power #ow through two-belt spans. (a) First span: , mea-
sured; , calculated. (b) Second span: , measured; , calculated.
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and tensioner. In Figure 18(a), one can "nd that the vibrational energy #ow
increases as the belt thickness increases. Figure 18(b) shows the decreasing trend of
power #ow with the increase of loss factor of the belt. As the spring constant of the
tensioner increases, the tensioner becomes more di$cult to move and the power
#ow from the belt decreases as seen in Figure 18(c).

4. CONCLUSION

In this study, vibrational power transmission in axially moving belts with pulleys
and tensioners was studied analytically and experimentally. It was shown that the



Figure 18. Change of the transmitted vibrational power to the tensioner by varying the physical
parameters. (a) Belt thickness: *h*, h"1 mm; *s*, h"2 mm; *n*, h"3 mm; *e*,
h"4 mm. (b) Loss factor of the belt: *h*, g"0)05; *s*, g"0)10; *n*, g"0)15; *e*,
g"0)20. (c) Spring constant of the tensioner: *h*, k

s2
"1e4 N/m; *s*, k

s2
"1e5 N/m; *n*,

k
s2
"1e6 N/m.
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total vibrational power #ow is the sum of the true power #ow and the power
component associated with the belt movement. By utilizing the fact that the wave is
totally re#ected in the idler condition, the net power #ow into the tensioner could
be obtained. It was shown that the direction of the vibrational power #ow from
both belt spans is pointing toward the tensioner. Results of the parametric study



Figure 18. Continued.
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showed that the power #ow into the tensioner decreases with the decrease of
belt thickness or the increase of loss factor and/or sti!ness of the tensioner. It is
thought that the analytical method proposed in this paper provides a clue for
solving the vibration and noise problems in association with the belt}pulley
systems.

However, only the idler condition with weak coupling is dealt with in this paper.
The strongly coupled belts should be further investigated in order to account for
the energy transmission over the idler that can be observed in metallic belts. In the
latter case, it is thought that quite precise consideration should be given to the wave
re#ection from the belt}pulley or belt}idler junction. Even the weakly coupled belts
such as the rubber belts, the wave re#ection coe$cient of the belt}pulley junction
should be carefully measured for more precise quantitative evaluation of the power
#ow. One may extend the theory by including other types of excitation such as the
pulley vibrations of torsional, bending or their combinations. The study of the
belt-induced noise and vibration would be fruitful if the e!ect of the structural
mobility of the supporting structure for pulley shafts and tensioners is investigated
further.
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